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Abstract
Recent interest in the study of networks associated with complex systems
has led to a better understanding of the factors and parameters relating the
topology of the associated networks with the dynamics of the systems, and in
particular their synchronization. In this paper, by using known and new results
from spectral graph theory, we characterize relevant factors which affect the
synchronization of complex networks.

PACS numbers: 89.20.Hh, 89.75.Da, 89.75.Fb, 89.75.Hc, 89.75.−k, 05.45.Xt

1. Introduction

Natural and technical systems that change with time can be modelled mathematically by
considering dynamical systems, either stochastic or deterministic. While linear dynamical
deterministic systems are well known, many aspects of stochastic and nonlinear systems are not
totally understood. One of them is the relationship between topology and synchronization of
the associated network of special interest after many recent studies and models for real networks
associated with complex systems have characterized their relevant topological parameters and
graph invariants. In this paper we find bounds that connect the synchronizability of the
network, through the eigenvalues of its Laplacian, with some important network parameters
like the diameter, average distance, betweenness, isoperimetric number and maximum and
minimum degrees.

Different theoretical frameworks have been considered to study the synchronization of
complex networks, and in many of them synchronization is measured by considering the
Laplacian spectra. For example, in the classical approach of Barahona and Pecora [1], a
network of coupled identical oscillators has the following equations of motion:

ẋi (t) = F(xi(t)) + σ

N∑
j=1

LijH(xj (t)), i = 1, . . . , N, (1)
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where xi(t) = (xi1(t), . . . , xiN (t))T ∈ RN are the state variables at each node i, ẋ(t) =
F(x(t)) controls the dynamics of each node, H(x(t)) is an output function (the same at
each node), σ is the coupling strength and L is the Laplacian matrix. The Laplacian is a
symmetric matrix with zero row-sum that accounts for the topology of the network, defined to
be Lij = −1 if nodes i and j are connected, Lii = δi if node i has degree δi (i.e. is connected
to δi other nodes) and Lij = 0 otherwise.

The linear stability of the synchronization state {xi(t) = x∗(t), i = 1, 2, . . . , N} is given
by equations that can be diagonalized into blocks as ẏ(t) = [DF(s) + θDH(s)]y(t), where
y represents the different perturbation modes from the synchronized state, θ = σθi for the i
block, where θi is the ith eigenvalue of the Laplacian matrix. The largest Lyapunov exponent
for this equation �(θ) provides the linear stability of the synchronized state for any linear
coupling. In [2], it is shown that this state is stable if �(σθi) < 0 for i = 2, . . . , N , where
θi is an eigenvalue of the Laplacian. On the other hand, it has been found [1] that for many
chaotic oscillators there exists a range of values (α1, α2) where this condition is satisfied. In
this case, there exists a value of the coupling strength σ such that the synchronization state
is linearly stable if and only if θN/θ2 < α2/α1 ≡ β, where β is a constant independent of L.
The values for β are between 5 and 100 for many chaotic oscillators [2]. Therefore, for large
values of θN/θ2 it is not possible to obtain synchronization, independently of the value of the
coupling strength. In [1], the authors considered this framework to study the synchronization
of a small-world network, known as ‘pristine world’, in which links have been added to shorten
the average distance in a certain lattice (cycle of N nodes where each one is also linked to its
2k nearest neighbours to obtain a network with N nodes and Nk links), resulting in a good
synchronizability.

In another study, Wu and Chua [3] show that an array of identical coupled resistive
Chua oscillators can synchronize if the coupling conductances are sufficiently large. Using
algebraic graph theory they provide a bound on the conductances. More precisely, the algebraic
connectivity of the graph gives an upper bound on the value of the coupling conductance GC

that enables network synchronization. This fact suggests that a larger algebraic connectivity
facilitates network synchronization, i.e. the more connected the graph is, the easier it is to
obtain its global synchronization.

Finally, Wang and Chen [4] study the asymptotical synchronization of a dynamical
network model characterized by equation (1) with H(xj (t)) = −xj (t). The dynamical
system reaches a state of asymptotical synchronization if x1(t) = · · · = xN(t) = s(t) when
t → ∞, where s(t) can be an equilibrium point, a periodic orbit, or a chaotic attractor. The
system is exponentially stable if 1/θ2 is bounded by a constant.

In all of these models we can see that the synchronization of the network depends on
the second eigenvalue θ2 of the Laplacian matrix. When its value tends to 0, or 1/θ2 is
large, the network cannot reach a synchronization state. On the other hand, in the first
model, the highest eigenvalue θN , and more precisely the ratio θN/θ2, should also be small
to attain synchronizability. However, these two Laplacian eigenvalues by themselves do not
provide information about the relationship between the network topology and the dynamics
of synchronization. In the following sections we will give results, in the form of bounds, that
will provide a connection between the synchronizability of a network and several of its main
invariants and parameters.

2. Spectral bounds for network synchronization

To characterize the synchronization of a network, we will find the relationship between the
inverse of the second eigenvalue of the Laplacian matrix 1/θ2 and the ratio θN/θ2, with other
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graph parameters including the minimum and maximum degrees, diameter, average distance,
isoperimetric number, betweenness centrality and clustering.

2.1. Bounds for 1/θ2

The second eigenvalue θ2 of the graph Laplacian is known as algebraic connectivity [5] as its
value is related to the connectivity of the graph: if it is 0 the graph is not connected, if the
value is near to 0 the graph can be easily split into several components by deleting some edges
or vertices. Other more intuitive graph-theoretical measures can be related to the algebraic
connectivity (see [5]).

2.1.1. Minimum degree of the graph. The minimum degree of a graph, δ, is related to the
minimum connectivity of the graph. As θ2 � (Nδ)/(N − 1), we obtain

N − 1

Nδ
� 1

θ2
. (2)

Therefore, if δ = 1 and N is large we have a lower bound of 1. As the minimum degree
increases this lower bound approaches 0; consequently the minimum degree alone cannot
provide information on network synchronization. We will use this bound in section 3 to
improve a bound for θN/θ2 given in [6].

2.1.2. Edge connectivity. The edge connectivity of a graph, e(G), is the minimum number
of edges which must be deleted in a graph G to disconnect it. From [5], we obtain

1

θ2
� 1

2e(G)
(
1 − cos π

N

) . (3)

When N is large the bound becomes large independently of the value of e(G). This parameter,
by itself, is not of much help when studying the synchronization of a network.

2.1.3. Diameter. The graph diameter provides an inverse measure of the vertex connectivity.
Intuitively, we can say that two nodes in a network are weakly connected if their shortest
connection is through many other nodes, and therefore their distance is large. If this happens
for all pairs of nodes, the diameter D of the graph is large. One bound relating the algebraic
connectivity with the diameter has been given by Mohar in [7] as D � 4/(Nθ2) and we obtain

1

θ2
� ND

4
. (4)

For graphs with a large diameter or graphs with many vertices, equation (4) gives a large upper
bound. However, if both values are small then the network will be easy to synchronize. A
lower bound for the inverse algebraic connectivity can be obtained from the diameter bound
D � 2

⌈
�+θ2
4θ2

ln(N − 1)
⌉

from [7], where � is the maximum degree of the graph:(
4

ln(N − 1)

⌊
D

2

⌋
− 1

)
1

�
� 1

θ2
. (5)

From equation (5), we see that if D � ln(N − 1) then the bound is greater than 1, and it will
be difficult to reach a synchronization state unless the maximum degree � is very large.

Recent studies show that many real networks associated with complex systems have a
logarithmic diameter D ∼ ln N (small-world phenomenon). In this case, the lower bound
can be written approximately as 1/� � 1/θ2. Since the maximum degree � is also large, in
scale-free networks the lower bound will approach 0 and synchronization is possible. This
bound can also be obtained from equation (2).
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2.1.4. Average distance. Like the diameter, the average distance l among the vertices of
the graph is an inverse measure for the connectivity of the graph G. In [7], there is a bound
(obtained by B D McKay, but unpublished) which allows us give this upper bound for the
inverse algebraic connectivity:

1

θ2
� (N − 1)l

2
− N − 2

4
. (6)

From this bound, we see that networks that have a small number of nodes and a small
average distance l, should have a small inverse algebraic connectivity, so that the network can
synchronize. A lower bound can be obtained from l � N

N−1

(⌈
�+θ2
4θ2

ln(N − 1)
⌉

+ 1
2

)
:(⌊

2l(N − 1) − N

2N ln(N − 1)

⌋
− 1

4

)
4

�
� 1

θ2
, (7)

and we see that as N becomes large, the bound takes a lower value if the average distance
is also small. However, if N is small and l relatively large, the bound is also large and the
synchronization of the network would be more difficult to reach. The maximum degree can
also affect the synchronization; larger degrees make it easier.

2.1.5. Isoperimetric number of a graph. The isoperimetric number of a graph is the number
of edges that must be removed from a graph to obtain two connected components that are as
large as possible. More precisely, it is defined as

i(G) = min
|X|� N

2

|δX|
|X| ,

where X is a subset of vertices and δX is the boundary of X, i.e. the set of edges in G between
vertices in X and vertices not in X.

Mohar [9] provides two different bounds for the algebraic connectivity of a graph based
on the isoperimetric number. The first bound is a lower bound: i(G) � θ2/2 which leads to

1

2i(G)
� 1

θ2
(8)

and tells us that an isoperimetric number approaching 0 implies a large value for the inverse
algebraic connectivity, and therefore the network is difficult to synchronize.

From the Cheeger inequality, which relates the isoperimetric number of a graph with its
algebraic connectivity θ2 and its maximum degree � [9], it is also possible to obtain an upper
bound on 1/θ2. From i(G) �

√
θ2(2� − θ2), we have the inequality θ2

2 − 2�θ2 + i(G)2 � 0
which leads to

1

� +
√

�2 − i(G)2
� 1

θ2
� 1

� −
√

�2 − i(G)2
. (9)

If i(G) ≈ �, both bounds approach the value 1/� and as the inverse of the algebraic
connectivity will be less than 1, network synchronizability will be enhanced. On the other
hand, if i(G) ∼ 0 the upper bound goes to ∞ while the lower bound is 1

2�
, and we know from

the results above that the network cannot synchronize.
From all these bound, we see that a small isoperimetric number i(G) means that fewer

edges need to be removed to disconnect the graph into two large components and network
synchronization is more difficult, while a large isoperimetric number makes harder to split the
graph and favours it.
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2.1.6. Average and maximum betweenness centrality. Vertex betweenness was first proposed
by Freeman [10] in 1977 in the context of social networks and has been considered more
recently as an important parameter in the study of networks associated with complex systems
[11]. Betweenness is usually defined as the fraction of shortest paths between vertex pairs
that go through the vertex considered. Therefore, in many models, betweenness is a measure
of the influence of a node in the dissemination of information over a network [10, 12], and its
possible relationship with the synchronization capability of a network is not a surprise.

To be more precise, if σuv(w) denotes the number of shortest paths (geodetic paths)
from vertex u to vertex v that go through w, and σuv is the total number of geodetic
paths from u to v, then we define bw(u, v) = σuv(w)/σuv and the betweenness of vertex
w is Bw = ∑

u,v 
=w bw(u, v). The betweenness of a graph G = (V ,E) of order N is

B = (∑
u∈V Bu

)/
N and the maximum betweenness of G is Bmax = max{Bw|w ∈ V }. The

average betweenness B is related to the average distance l of the graph as B = (N − 1)(l − 1)

[13].
The maximum betweenness centrality, Bmax, is larger than B, so the corresponding

lower bounds can also be used to obtain lower bounds. We have obtained [13] the bound
Bmax + 2 � N√

θ2(2�−θ2)
that relates Bmax to the isoperimetric number. Therefore, we have

1

� +
√

�2 − (N/(Bmax + 2))2
� 1

θ2
� 1

� −
√

�2 − (N/(Bmax + 2))2
. (10)

If �(Bmax + 2) ∼ N , then 1/θ2 ∼ 1/� and there is synchronization, but if Bmax + 2 ∼
2N(N − 1) + 2 (as in a star graph) then 1/2� � 1/θ2 � ∞ and the bounds cannot be used to
describe the synchronizability of a network because the range between bounds is too large.

2.1.7. Clustering. The clustering of the graph, a measure of the number of mutual neighbours
of adjacent nodes, can affect the network synchronization; a large value means that there are
many vertices that are close to each other, and this enhances network synchronization if there
is a small variation on the clustering parameter for individual nodes.

2.2. Bounds for θN/θ2

From the bounds for 1/θ2 found in the previous section and the bound � < θN � 2� provided
by Fiedler [5], we can find new lower and upper bounds for the ratio θN/θ2. First, we use
bounds given by Mohar [7].

If there are two subsets of vertices, B and C, at distance r + 1:

4(r − 1)2 |B||C|
(N − |B| − |C|) · (|B| + |C|) <

θN

θ2
, (11)

where |B| are |C| are the cardinalities of the subsets. If both subsets have only one vertex and
they are at maximum distance D, then the bound is

2(D − 2)2

(N − 2)
<

θN

θ2
, (12)

which tells us that for large N and a small diameter, the bound will tend to 0 and synchronization
is possible.

Graphs with a diameter close to N would lead to large lower bound and the networks will
hardly synchronize.

We find in [7] another lower bound relating θN/θ2 to the average distance

l <
N

N − 1

⌈
1 +

√
θN

θ2

√
α2 − 1

4α

⌉(
1

2
+

⌈
logα

N

2

⌉)
, (13)
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where α > 1 is a parameter. From this equation, we can see that a large average distance
hinders the network synchronization.

The following lower and upper bounds are given in [8]:(
1 − 1

N

)
�

δ
� θN

θ2
� (N − 1)�BE

maxDl̄, (14)

where BE
max is the normalized maximum edge betweenness of the network [13, 14]. The

usefulness of the bounds is discussed in [8]. The lower bound tells us that the heterogeneity of
degrees affects the synchronization of the network. A large difference between the maximum
and minimum degrees makes the network more difficult to synchronize. However, this does not
mean, as we will see below, that homogeneous networks can always synchronize. Simulation
studies on model networks confirm this result, see [16].

In some cases it is possible to improve these bounds by considering bounds already known
for θ2 and θN .

From equation (2) and from θN � �N/(N − 1) (see [5]), we have
�

δ
� θN

θ2
, (15)

which is a small improvement on the lower bound given in equation (14). A better bound is
also obtained from equation (2) and from θN � (� + 1), see [15]:(

1 − 1

N

)
(� + 1)

δ
� θN

θ2
. (16)

For scale-free networks, for which δ = 1, � is large and N is also large (1−1/N � 1) the
bound becomes (� + 1) � θN/θ2, and the network has a very low synchronization capability.

Another upper bound for θN/θ2 can be obtained from equation (7) and θN � 2�:

θN

θ2
� �

(
N

(
l − 1

2

)
N + 1 − l

)
. (17)

We can see that if some of the parameters �, l, or N are large, then the upper bound is large
(and not useful). However, if all three are small simultaneously, then the bound is small and
the network will synchronize.

Another diameter-based upper bound can be obtained from equation (4):
θN

θ2
� �ND

2
. (18)

As before, if the maximum degree, number of nodes and diameter are small then the network
will synchronize.

With respect to lower bounds for θN/θ2, we can use equations (5) and 7 to obtain(
4

ln(N − 1)

⌊
D

2

⌋
− 1

)
� + 1

�
� θN

θ2
, (19)

(⌊
2l(N − 1) − N

2N ln(N − 1)

⌋
− 1

4

)
4(� + 1)

�
� θN

θ2
. (20)

Finally, from the bounds of equation (9) based on the isoperimetric number, we obtain
2

1 +
√

1 − (i(G)/�)2
� θN

θ2
� 2

1 −
√

1 − (i(G)/�)2
. (21)

If i(G) ∼ � then both bounds in (9) reach 2 and the network should synchronize, while if
i(G) ∼ 0 the bounds go to infinity and the network cannot synchronize.
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3. Synchronization in small-world scale-free networks

There have been several recent experimental studies about how different parameters affect
synchronization in dynamical systems, particularly for small-world and scale-free networks.

In [1], the authors find that a low value for the average distance l facilitates network
synchronization in small-world networks. In [8], the authors study different known models for
small-world scale-free networks and they observe that synchronization is enhanced compared
to regular meshes. In [16], it is claimed that heterogeneity in the degree distribution can reduce
the average distance l improving the network synchronizability. However, these authors show
that increasing the degree heterogeneity and decreasing l makes the network synchronization
difficult to reach, as most of the network charge is concentrated in the nodes with largest
degree (hubs) and Bmax is high. Factors that can lead to synchronization are also studied
in [1, 8, 16]: maximum degree, average distance of shortest paths, degree heterogeneity
and betweenness centrality for a small-world network (Watts–Strogatz model). From their
simulation results they conclude that in this sort of network, synchronization is enhanced by
degree heterogeneity, a small average distance, a small maximum betweenness centrality, and
a large maximum degree. Note that the effect of degree heterogeneity is different from the
results in [8] for other networks, but the role of Bmax is the same. There is also an example in
[17] that shows that with Bmax small the network does not synchronize.

On the other hand, the influence of the clustering of the graph in the synchronization of
the network has been studied in [18] for networks with a Poisson degree distribution and for
scale-free networks. In both cases, a high value of the clustering parameter inhibits global
synchronization and the different clusters oscillate at distinct frequencies. Moreover, for
scale-free networks, synchronization is promoted in the hubs although is not global.

Finally, in [19] the authors provide a method that, given a degree distribution, a network
with this distribution can be produced with an algebraic connectivity inversely proportional
to the number of links of the network. The isoperimetric number and Cheeger inequalities
are also used to produce a bound for this parameter and then construct a network that will
synchronize. A similar result can be found in [20].

In another context, Wang and Chen [4] have studied the synchronization of small-world
scale-free networks. They find synchronization in a modified Watts and Strogatz model which
consists of adding new links with probability p without rewiring the original links. The
algebraic connectivity increases when this probability increases. This is an expected result as
with a large value for p the graph has many links and approaches a complete graph. The same
authors in [21] study the synchronizability of the Barabási–Albert preferential attachment
model, and they see that it remains almost unchanged during the growing process. Moreover,
network synchronization is resilient to the deletion of random nodes, but fragile if the hubs
are selected for deletion.

Small-world scale-free networks have a small diameter and average distance [22]; this
enhances synchronizability. The study of some other properties will allow us to use the bounds
found in the previous sections to understand the conditions that can lead to the synchronization
of a given network.

3.1. Difference between the maximum and minimum degrees

From the bound given by equation (16),(
1 − 1

N

)
(� + 1)

δ
� θN

θ2
, (22)
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G1

G2

Figure 1. Two different graphs with maximum isoperimetric number.

Table 1. Invariants for the graphs of figure 1.

δ � D l i(G) Bmax θN θ2

G1 n − 1 2n − 1 2
3n − 2

2n − 1
1 2n(n − 1) 2n 1

G2 n n 2
3n − 2

2n − 1
1 n − 1 n + 2 2

if a network has a large difference between the minimum and maximum degrees, δ and �,
then it is difficult to synchronize. As very often this is the case for scale-free networks and N
is large, these category of networks are difficult to synchronize as it is found in [8].

Consider the union of two complete graphs Kn with n nodes connected according to the
different patterns shown in figure 1. The new graphs will have N = 2n nodes.

In the first case G1, one node from the first complete graph is connected to all the nodes
of the second complete graph. In the second case G2, each node from the first complete graph
is connected to the corresponding node in the second graph.

The values for the relevant network parameters are shown in table 1.
For these two graphs, we find the lower bound for the ratio θN/θ2 which for G1 is

N − 1

N

(� + 1)

δ
= 2 +

1

n − 1
� θN

θ2
, (23)

which tends to 2 when n is large. For G2, we obtain
N − 1

N

(� + 1)

δ
= 1 +

n − 1

2n2
� θN

θ2
(24)

and the bound goes to 1 when n is large and therefore the network can synchronize better.
We note, from the bound, that the heterogeneity in the degree distribution [8, 23] affects

the synchronizability through the ratio between the highest and lowest degree nodes.

3.2. Isoperimetric number

When the difference between δ and � in the network is small (homogeneous networks), then
we should check if the network can be easily disconnected in two parts with sizes as large as
possible (i.e. if the isoperimetric number is small). From the bounds given by equations (8)
and (21) the network cannot synchronize.

In figure 2, we have an example of such a graph with its relevant invariants and parameters
listed in table 2. Note that although most of the parameters should favour synchronization, the
network has a low synchronizability as the isoperimetric number is very small.
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Figure 2. A graph with a low isoperimetric number.

Table 2. Invariants for the graph of figure 2.

δ � D l i(G) Bmax C

n − 1 n 3
4n − 3

2n − 1

1

n
2n(n − 1) 1 − 1

n

3.3. Number of nodes with degree 1

This is another factor to be considered for synchronization. If a scale-free network has a
high ratio of degree 1 nodes, even when the maximum degree is small, it will be hard for the
network to synchronize. Let X0 be the set of nodes of degree 1, and let N0 = |X0| � |V |

2 .
From the definition of isoperimetric number

i(G) = min
|X|� N

2

|δX|
|X| � |δX0|

|X0| = 1 (25)

and from equation (8), as 1/2 � 1/θ2, the network is difficult to synchronize.
In conclusion, and from the study of the different network parameters and invariants,

a network will synchronize if the diameter is small, the average distance is also small, the
maximum betweenness Bmax is small, the clustering parameter is high, the isoperimetric
number is high, the ratio �/δ is small and finally if the number of nodes with degree
1 is also relatively small. The heterogeneity of the degree distribution and other factors
suggested by some authors can be related to those mentioned above. How easy or difficult the
synchronizability of a network is can be seen from the bounds relating the former parameters
with the values of 1/θ2 and θN/θ2, obtained from the Laplacian of the network, which
characterize the synchronizability of a given network.
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